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TECHNOLOGICAL DIFFUSION WITH SOCIAL
LEARNING*

SANDEEP KAPUR

This paper attributes the slow diffusion of innovations to an informational
externality in the adoption process. The profitability of new technologies
is uncertain but firms can learn progressively through observing the
adoption experience of others. Given this prospect of social learning,
every firm would prefer that other firms adopt before it does. In the
absence of explicit coordination, the firms could end up in a sequence
of waiting contests. This results in staggered adoptions even when all
firms are ex-anteidentical. The pace of diffusion is determined endogenously,
and shown to depend on the characteristics of the innovation.

I INTRODUCTION

EMPIRICAL studies of technological diffusion suggest that the spread of new
technologies is usually a gradual process, with considerable lags between
successive adoptions of an innovation by various users. This paper attempts
to relate the lags in the sequence of adoptions to an informational externality
in the adoption process. When an innovation arrives each firm is uncertain,
in a probabilistic sense, of its profitability but can progressively learn more
about it through observing the adoption experience of other firms. Given
this prospect of ‘social learning’, every firm prefers that other firms adopt
before it does, because this enables a better-informed adoption decision. In
the absence of any explicit coordination, the firms could end up in a sequence
of waiting contests. In each contest the set of firms that have not adopted
previously must choose adoption times and, in equilibrium, each firm couid
end up randomising over adoption times. The following pattern emerges.
After one or more firms adopt, the remaining firms use the information gained
through the adoption to revise their beliefs about the technology. They then
engage in another waiting contest to see which of their member should adopt
next, which gencrates some more information, and so on. The analysis of the
sequence of waiting contests allows us to relate the pace of diffusion to some
fundamental characteristics of the innovation, and to make some conjectures
about the likely pattern of diffusion. We show that the pace of adoptions
tends to rise over time if experience with the technology reinforces confidence
in its profitability, while a run of adverse experience may arrest the process
of diffusion altogether.

Uncertainty about the profitability of the innovation is here confined to

* [ am grateful to Ashish Arora, Jayasri Dutta, Frank Hahn and Marco Marioiti for comments
and to an anonymous referee for pointing out an error in an earlier version.
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the idea that the cost of adopting the innovation (or more generally, the cost
of switching from an existing technology to the new one) is uncertain, Indeed,
new process technologies typically require considerable firm-specific debugging
of their routines before they are truly operational and, ex-ante, the total cost
of debugging (including the production loss due to down-time) is often
uncertain. Every time some firm adopts the innovation, other firms can
improve their estimates of the true cost of adoption. Clearly, confining the
uncertainty to adoption costs alone is restrictive but makes our analysis
tractable. First, it allows us to posit that the post-adoption information
becomes available soon after an adoption, which would not be the case if
the uncertainty related to, say, the long term profitability of the technology.
Second, it ensures that new information arrives only when an adoption occurs,
so that the waiting contests between successive adoptions can be modelled
as stationary games. This would not be appropriate if, say, recurrent
information from firms using the new technology continued to alter the
potential adopters’ beliefs, even in the absence of any further adoptions.

In our model, each waiting contest involves an adoption timing game
among the potential adopters left at that stage; the contest ends as soon as
at least one of them adopts. A priori, simultancous adoptions are not ruled
out. The firm(s) that adopt the innovation provide a noisy signal about the
adoption cost to the remaining firms and, apart from this, they have no
bearing on the future course of adoptions. The remaining firms use this
information to revise their beliefs in a Bayesian manner and then engage in
the next waiting contest; that ends with the next adoption(s), and so on.
Adoption is assumed to be irreversible. The sequence of waiting contests
continues until either all firms have adopted, or the process attains a state
where no firm ever adopts, arresting the process of diffusion irreversibly. To
restrict the complexity of the underlying adoption timing game, we consider
the symmetric Markov Perfect Equilibria of the sequence of waiting contests.
Under fairly mild restrictions, the equilibrium Markov strategies involve
randomisation over adoption times. To understand this, note that the benefit
from delaying adoption lies in the possibility of learning from the experience
of other firms, provided they adopt first. However, because future profits are
discounted, delaying adoption in the hope that some other firm will adopt
first is costly. At the mixed strategy equilibrium, the benefits and costs of
delaying are equal so that each firm is indifferent between various adoption
times, and therefore prepared to randomise over them. We use a discrete
time formulation for the waiting contests; the limiting case where the decision
interval is arbitrarily small enables a reasonabiy simple formulation for the
equilibrium randomisation. This allows us to compute the expected duration
of a typical waiting contest, and thereby comment on the pace of diffusion.
We also outline an argument that suggests that the coordination problem
central to this analysis may lead to excessive delay in the diffusion of new
technologies.

(&) Basil Blackwell Led. 1995,
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Our analysis allows us to make some useful conjectures about the likely
shape of diffusion curves. It is a well-noted empirical regularity in the literature
on technological diffusion that adoptions of an innovation tends to be
staggered, with some firms adopting it well before others. (Indeed, the
time-profile of diffusion curves is often S-shaped, as demonstrated by Griliches
[1957] for the spread of hybrid corn, and by Mansfield [1968] for a range
of industries.) The staggered pattern of diffusion has usually been explained
by appealing to the intrinsjc heterogeneity between firms, as in Davies [1979].
This explanation relies on the fact that the gain to adopting a new technology
varies with a firm’s attributes such as size, vintage of existing fixed capital,
past experience with related technologies, extent of diversification, etc. The
precise configuration of these attributes determines, for each firm, a reservation
price for the acquisition of the technology. Quite possibly the distribution
of reservation prices might be such that not all firms find it advantageous
to adopt a technology as soon as it arrives. Diffusion results from changes
in the underlying characteristics of the new technology which alters the
reservation prices over time. For instance, where the new technology is
indivisible, initially it may be confined to only large firms whose scale of
operation justifies its adoption. Subsequently, progressive reduction in
acquisition costs may make the technology profitable for the smaller firms
as well. If so, the shape of the diffusion path reflects the distribution, in the
population of potential adopters, of the attributes that affect the gain from
adoption: an S-shaped diffusion path might emerge from, say, a normal
distribution of characteristics, since the cumulative normal is S-shaped.*
While explanations of diffusion based on such heterogeneity of users are very
convinging, and perhaps true for most technologies, we demonstrate the
possibility of staggered adoptions even when all users are ex-ante identical.
Our model is not unique in this respect. Other game-theoretic models have
demonstrated that identical firms could end up adopting at different times
- see Dasgupta [1986], and aiso the survey by Reinganum [ 1989] - but these
analyses do not say much about the size of the time lags between successive
adoptions. Qur approach allows us to relate the lags to perceptions about
the technology, and hence comment on how changing perceptions affect the
pace of diffusion. This enables us to construct crude diffusion curves. We
find that for good technologies (good in a sense made precise below), the
early pattern of diffusion suggested by our model is not unlike the initial,
rising part of an S-shaped curve.

! The S-shaped pattern was also explained through ‘epidemic-type’ models which argued that
all firms do not adopt an innovation immediately because they are nor all aware of its existence.
If awareness spreads contagiously, through random matching between informed and uninformed
agents, a logistic time path for adoptions would emerge. However, this is not very convincing
for industries in which advertising and other institutional arrangements provide prompt
information about the availability of the technology.

& Basil Blackwell Ltd. 1953
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The idea that firms might delay the adoption of a technology to gather
more information about it is not entirely novel - it can be found in Rosenberg
{19761, Balcer and Lippman [1984], Bhattacharya, Chatterjee and Samuelson
[1986] and Jensen [1982], among others. However, these models tend to be
decision-theoretic and ignore strategic issues. For instance, Balcer and
Lippman [1984] consider a situation in which the technology improves
exogenously over time, and a firm must choose between adopting the current
best-practice technology and waiting for an improved version to arrive: the
adoption timing problem is one of inter-temporal optimisation rather than
one of strategic choice. In Jensen’s model each firm chooses its adoption
time optimaily in relation to an exogenously-given profile of expected
information flows, and diffusion is explained in terms of industry-wide
difterences in prior beliefs about the innovation; this replaces heterogeneity
in firm characteristics with heterogeneity in beliefs as the principal explanation
for different adoption times. Our model abstracts from heterogeneity completely,
by imposing symmetry in beliefs as well as in all firm characteristics. Further,
in our model, the arrival of information is endogenous to the process of
diffusion and is a crucial aspect of the strategic interaction between firms.

While considering the positive informational externality in the adoption
process, our model ignores other externalities, most notably those that arise’
through product-market interactions, that make the adoption decision a
matter of strategic choice, (See Fudenberg and Tirole [1985] and Reinganum
{ 1989] for models along these lines). Typically these other externalities imply
an early-mover advantage in the adoption timing game while, in contrast,
in our model the advantage lies with the late-movers in the adoption sequence.
In terms of the categories proposed by Dasgupta [1988], ours is a waiting
game as opposed to a race. There are previous analyses in which the strategic
interaction has the characteristics of a waiting game. Reinganum [1985]
models a late-mover advantage in the research and development process as
a waiting game, and even more closely to our approach, Mariotti [1992]
considers a waiting game based on an informational externality. However,
- hoth these papers consider only a single waiting contest rather than a sequence
of waiting contests as in our model. With just a single waiting contest, once
the first move is made by one player all others follow immediately. Hence
these models do explain the initial delay in the adoption of a good technology
but do not really explain, in a multi-firm context, why adoptions are staggered.
More generally, the influence of learning on diffusion of technologies has
also been considered by Besley and Case [1993] and by Ellison and
Fundenberg [1993] in slightly different contexts; in fact, the term social
learning has been borrowed from the latter. Lastly, the idea of endogenous
revelation of information resulting in a late-mover advantage has been
explored in contexts other than technology choice; Chamley and Gale [1994]
model investment delay as an N-player game with an informational externality,
but their concerns and model-structure are different from ours.

€ Basil Blackwel]l Led. 1995,
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The scheme of the paper is as follows. Section II sets up the formal model
and describes the equilibrium in the underlying game. Section III explores
the implications of this analysis for the diffusion path. Section IV outlines
some extensions and concludes.

II. A MODEL OF DIFFUSION

A new, improved technology arrives in an industry with N identical firms.
For each firm, the private incremental gain from switching to the new
technology is assumed to be independent of other firms’ technology choices;
the present discounted value of the stream of future gains is known to be
R = (. Adoption entails sunk-cost ¢, uniform across firms but, ex-ante, its
true value is unknown: for simplicity we assume that it could take one of
two possibie values, ¢ or é. Both R and ¢ are time-invariant and, therefore,
so is the net gain from adoption, § = R — ¢. We write 8(¢) = #,and 8¢} = 6,
and it is assumed that 8, < 0 < 4,. In other words, adoption is profitable if
and only if the true cost of adoption turns out to be ¢. If so, we say that the
innovation proves to be ‘good’.

When the innovation arrives, the firms have exogenously-given beliefs
about the true value of ¢. All firms are assumed to have the same prior beliefs.
Subsequently, as some firms adopt the innovation, the beliefs of the others
who remain to adopt (L.e, the potential adopters) are progressively modified
in the light of the adopters’ experience. Formally speaking, whenever some
firm(s) adopt the innovation, the rest observe, possibly with some lag, a signal
that is imperfectly correlated with the true cost of adoption. At any stage all
potential adopters receive identical signals, and have identical revision
mechanisms. This implies that all potential adopters have symmetric beliefs
at any time. Learning through other firms’ adoptions, or what we term as
social learning, is the only channel for new information about the technology
in this model. And since firms earn only through observing others’ adoptions,
learning is endogenous to the process of diffusion. :

We measure time from the date that the innovation arrives. At any time
t 20, let p, be the current probabilistic belief, common for all potential
adopters, that the innovation is good, where 0 < p, < 1. Given the structure
of our learning mechanism, this belief changes only in response to the signals
that result from others’ adoptions and is otherwise time-invariant. This
permits the following construction. A stage in the diffusion of the innovation
(henceforth, a stage} refers to the time-interval over which p, remains
unchanged. When beliefs change in response to a new signal, the diffusion
process is said to move from one stage to the next one. The duration of the
stages is determined endogenously in this model, a feature that allows us to
study the speed of diffusion. We index the stages as follows. Let y, be the
cumulative number of the firms that have adopted the technology before
time r, so that n, = N — y, is the residual number of potential adopters at
) Basil Blackwell Ltd. 1995
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that time. A stage, and the associated value of p, are indexed by n, the number
of potential adopters remaining at the start of that stage. That is, the n-th
stage is described as (n, p,,).

Let the n-th stage begin at time z, and suppose that at some time t, > ¢,
exactly k firms adopt simultaneously, where 0 < k < n. The other 1 — k firms
observe the acts of adoption immediately, and a little later, at time 7, + &,
they receive a signal. Here, 4 is to be understood as an information lag. Let
S, be the finite set of stage-n signals conditional on k firms adopting
simultaneously, with typical element s. The firms’ revision mechanism is
Bayesian: given the current belief p, at stage », the updated belief on receiving
a signal s is

Gk(s)p“
o), + 0,(s)(1 — p,)

(1) B (sp.) =

where a,(s) is the likelihood of receiving signal s conditional on 8 = §,, and
likewise o,(s) for 8 = 8,. Together the set S,, and the associated &,'s define
an information structure in the sense of Blackwell [1951). [Abusing the
notation slightly, we used the symbol S to represent the information structure
and sometimes just the associated set of signals; the context makes clear
which one we refer to.] In order to impose some consistency in the revision
mechanism across the stages, we posit that §, = §, for all n. This implies
that the set of potential signals and the conditional probabilities 4,'s do not
vary with the stage index n, but we do allow them to depend on the number
of adoptions k. The latter feature is important: if a large number of firms
adopt simultaneously, we expect the resulting signal to be relatively more
informative. We will return to this issue later but for the moment it completes
the description of the learning mechanism.

The possibility of learning creates an informational externality. Firms that
adopt at a later stage can condition their adoption decision on the information
gained from the previous adoptions and, for that reason, late-adopters can
expect to make better-informed decisions. Given this externality, it may not
be optimal for a firm to adopt the innovation immediately even if the firm
is risk-neutral and the expected profitability is positive. Rather, each firm
would prefer that the other firms adopt first and hope to follow in their
slip-stream: we have an instance of what Dasgupta [1988] calls a waiting
game. We model this situation as a special kind of waiting game, namely the
n-player War of Attrition. This is a generalisation of the two-player game
introduced by Maynard Smith [1974], and also discussed by Kapur [1994].

The game is as follows. Starting at ¢ = 0, each firm must choose some
adoption time re {0, A, 2A, .. .}. A decision never to adopt amounts to choosing
an infinitely large adoption time. Notice that we model the decision process
as being discrete, with A as the time interval between adjacent decision nodes.
We refer to A as the reaction lag; it also measures the lag between the arrival
@ Basil Blackwell Ltd, 1955
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of a signal and the earliest informed response to it. The limiting case as A
is infinitesimally small will be of particular interest for our results. At any
time the action set for a firm is 4 = {wait, adopt} if the firm has not adopted
before then, and otherwise is the trivial action ‘do nothing’. The observed
history at any time ¢ comprises the actions taken by all firms until ¢ — A,
and any signals received until then. For the sake of tractability, we confine
our attention to Markov Perfect Equilibria (MPE}) of this game. The details
of this solution concept may be found in Fudenberg and Tirole [1991], but
a brief description is helpful at this juncture. In some games the previous
history might influence current and future play only through its effect on
some ‘state’ variables. The state is a summary of the payoff-relevant history,
where what is and what is not relevant depends, of course, on the chosen
specification of the game. For instance, in the learning mechanism used here,
the beliefs at any stage incorporate the information from ail previous signals,
so that each firm might condition its actions on the current state of beliefs
rather than on the entire history (i.e., evolution) of beliefs up to that time. If
$¢, we can define strategies as maps from the set of states to the set of actions,
and such strategies are known as Markov strategies, Markov Perfect Equi-
libria are defined on the resuitant strategy space.

In this model, the payoff-relevant aspects of the history at ¢ are (i) the
number of firms y, that have adopted before time ¢, since this determines the
residual number # that are still active in the game; (ii} the current value of
p at any time, which incorporates prior beliefs and all the information
provided by adoptions that occurred until ¢ — J§; (iii} the pattern of adoptions
in the interval (r — d,¢) as this determines whether or not any signals are
anticipated (with probability one) in the future interval (¢,¢ + 8); and lastly,
{(iv) the elapsed time ¢; firms discount future returns, so that any given level
of profits is more valuable at an earlier date. These four aspects together
define the state at any time. Strategies for each firm can be defined as mappings
from the set of all possible states to the space of probability distributions
over the set of feasible actions.

It is analytically convenient, however, to decompose this game into a
sequernice of stage-games. Within each stage-game, say the n-th one, the beliefs
p, are fixed, so that the other aspects provide a compiete description of the
relevant history in that stage-game. Loosely speaking, the stage-games
correspond te subgames in the original game, and if we can specify Nash
equilibrium strategies for each stage-game, these, taken over all possible
stage-pames, would constitute a MPE of the original game. The relevant
history within the stage-pame is given by #, t and the pattern of adoptions
in the interval (¢t — 4,t). To formalise the latter, let m be the smaliest integer
such that mA = 8. Loosely speaking m denotes the number of decision nodes
that a firm would have to wait after some firm adopts to receive the signal.
The pattern of adoptions in the interval [t — mA,t — A] can be expressed as.
a 1 x m vector

(€) Basil Blackwell Ltd, 1995,



180 " SANDEEP KAPUR

v,= (07 L 0T TR, forall ¢z,

where, o' 4 is the number of adoptions that occurred at t — jA. The vector
v, indicates the number of adoptions that occurred at each decision-node in
the interval fromt — § — A tot — A, and we refer to it as the ‘recent adoption
history at £. Within the stage-game, behaviour strategies are defined as
follows. The n-th stage-game begins at t,, and each of the n firms in this
stage-game must choose an adoption time tef{t,,t, + Az, + 2A,...}. For
firms that have adopted before time ¢, the only feasible action is ‘do nothing’.
For any firm i that has not adopted before time ¢, let §(t,4,, n; p,) denote
the probability of adoption (in period 1) if the state is given by (¢,v,n). The
stage-contingent mapping 8,(-;p,) from the set of states to the set of
probability distributions over {adopt, wait} represents a behaviour strategy
for firm i in this stage-game. '

The firms maximise expected profits. Let z(p) = pd, + (1 — p)d; denote the
expected value of the net gain from adoption, given beliefs p. Now consider
the expected profit if the firm can condition the adoption decision on some
additional information. Suppose a firm starts with a prior p, and adopts if
and only if the signal se S, reveals the expected profits to be non-negative.
We define the information-augmented expected gain from adoption as

(2) (plS,) = ¥ Pr(s)Max[n(5(s,p)).0].

se8k

Here Pr(s) = a,(s)p + 4,(si(1 — p) is the ex-ante probability, given p, of
receiving the signal s. Recall that f is the updated belief if signal s is received.
In general, conditioning the decision on additional information cannot make
the expected outcome any worse, so we have fi(p|5,) = n{p). Note that 5,
refers to the information structure associated with k simultaneous adoptions.
As stated earlier, it is entirely reasonable to posit that the infermativeness
of signals is increasing in k. More formally, we expect the information structure
S, to be at least as fine as S,. It follows, from Blackwell’s [1951] celebrated
result, that we must have w(p|S,, ) = #(p|S,). In words, we do not expect
to be worse off with more information. To make the notation less cumbersome,
we write #(p,} as n,, and #(p,|S,) as 7w, .

Note that the ordering, as above, of expected payoffs according to the
availability of information is weak. For the stage-game to be a War of
Attrition, it must be the case that it is strictly better to follow than lead in
the adoption sequence. The ordering of expected payoffs with no information
and with some information would be strict, that is we would have 7, , > 7,
if the anticipated information S, is of consequence to the adoption decision.
Information is said to be of consequence if it affects the decisions in a
non-trivial manner. This requires that there be some signal in §,, with a
non-trivial probability of arrival, which would induce the firm to behave
differently than if no information was available. We assume that the
& Basil Blackwell Litd. 1995,
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anticipated information is significant in this sense. However, we need to
strengthen this even further. Given that the earliest that a firm can take an
informed decision entails some lag ( it takes § after any adoption for the
signal to arrive, and another A before the firm can react to it) we must assume
that these lags are small enough not to overwhelm the advantage of an
informed decision. If p > 0 is the rate of interest, we restrict the validity of
this model to situations where

Condition 1: ¢ *“*¥z  >n,  forall0<k<n

This condition stipulates that the anticipated information is of sufficient
consequence, and that the cost of waiting is sufficiently small, so that once
an adoption occurs, it always makes sense to wait for the signal that would
result. For given p, S, and p,, this condition imposes an upper bound on
the magnitude of the lag & + A. Alternatively, it can be shown that for given
4, A, p, and §,, it imposes an upper bound on the values of p,. On the whole,
the condition is more likely to be valid in the early stages of the diffusion of
technologies where, typically, the initial scepticism about the innovation is
combined with the possibilities of substantial learning.

Let G,(n, p,) denote the n-th stage-game, parametrised by the size of the
decision interval A, where n > 1. We seck a characterisation for the symmetric
Nash equilibria of this game in behaviourally-mixed strategies.> Let
(8%, 8%,...,B%) be the symmetric Nash equilibrium, if it exists, for G,(n, p,),
where the stage-contingent mapping 85 = B¥(t, v, n; p,} specifies the equilibrium
adoption probability for a typical firm, given the state (t,s,,n). Let & denote
the following limit, whenever this limit exists:

* .
ot,v,,n;p,) = Lim INCRRCTD DX n’ p,,}‘
A0
We argue below that « could be viewed as the instantaneous adoption
intensity. However, we first show

Proposition . Given Condition 1, as A— 0, the symmetric Nash equilibrium
of G,(n,p,) is given as [«(n, p,), a(n, p,), ..., «(n, p,)1, such that
y d(n,p,) if n,20 and v, =0;
- 0 otherwise,
1 il
(mn—1)e "7, —n,

where &(n, p,) =

? There exists an asymmetric equilibrium in which one of the # firms chooses to adopt in this
state and the rest of the firms choose to not adopt. This case is degenerate in the sense that
equilibrium. exactly one firm adopts immediately, and is not very interesting for the analysis of
diffusion. Also, given the intrinsic symmetey of the problem, they are not necessarily mere convineing.

@ Basii Blackwell Ltd. 1995
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Formal proofs for all propositions are in the Appendix, but some intuition
for this one can be furnished here. The proposition claims that the equilibrium
strategy for each firm entails either a zero adoption intensity or a stationary
adoption intensity &, the choice between these two depending on the expected
profitability (given current beliefs) and on the recent adoption history v,. To
see why it must be so, first consider the two sub-cases that lead to the adoption
intensity being zero in equilibrium. Suppose that p, is so low that =, is
negative: it is clearly sub-optimal for any firm to adopt, since adoption leads
to a lower return than does waiting, which guarantees at least a nil return.
Hence, each firm chooses ¥ = 0 for ail (¢, v,, n) whenever =, is negative. And
since this choice is independent of A, in the limit too, we must have ¢ = 0.
No firm ever adopts and, intuitively speaking, pessimism about the innovation
halts the process of diffusion altogether. Next, suppose x, > 0 but o, # 0.
The former implies that adoption is profitable, but the latter indicates that
at least one firm adopted the innovation recently. A signal is then surely
expected (i.e., with probability one) in the near future, allowing the firm to
make an informed decision by ¢ + 8. Given Condition 1, it is optimal for the
firm to wait for that signal. Once again, « = 0 though in this case choice
reflects, not pessimism about the technology, but the desire to incorporate
more information in the adoption decision. Since this holds for every potential
adopter, the aggregate consequence in this case is that each adoption is
followed by an ‘information gathering phase’ of duration 4.

Now consider the interesting case where n, = 0 (so that the innovation is
profitable) and o, = 0 (no information is expected before £ + §). Note that as
long as no firm adopts, the process remains in the state v, = 0 so that the
game is stationary —if ¢ is reached, the game looks the same as it did at
t — A. The symmetric mixed-strategy equilibrium then involves stationary
strategies, and each firm chooses a constant adoption probability in each
decision period. The appendix derives the equilibrium condition for the
constant adoption probability, and then evaluates its limit as the decision
interval A— 0O to obtain the equilibrium adoption intensity & Condition 1
guarantees that & is well defined and, indeed, positive for any x, > 0.

For any firm, the choice of a positive (and finite) adoption intensity in the
stage-game amounts, in effect, to a randomisation over the adoption decision.
To see this, we first define a, = 8% /A, so that & = Lim,_, «,. Since the time
interval between adjacent decision nodes is A, there would be x = ¢/A decision
nodes in any given interval 0 to t. If the probability of adoption at any
decision node is §¥, the probability of not adopting at that decision node is
(1L — #%), and given the stationarity of the stage-game, the probability of not
adopting by t equals -

(L= B3y = [l — Ae, I

& exp{ —af) for small A.
& Basil Blackwell Ltd. 1993,
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Therefore, in the limiting case described here, the cumulative probability of
adoption by t equals 1 —e™, which is the cumuiative of the (negative)
exponential distribution. In other words, in equilibrium each firm chooses
an exponential distribution over adoption times. For firms to be prepared
to randomise over adoption times, it must be the case that they are indifferent
between adoption and waiting; those who wait can hope to make a more
informed decision, but the gain from this is wiped out by the delay that
waiting for information entails. In a sense, firms vie with each other to be

followers rather than leaders in the adoption sequence, 80 it is not altogether
" misleading to refer to the choice of a positive adoption intensity & as defining
the ‘strategic phase’ with the stage-game.

Natice that & depends on the characteristics of the innovation in a plausibie
manner. The term gr, in the expression for & represents the opportunity cost
(measured in flow terms) of delaying adoption: the higher is this cost, the
greater must be the eagerness to adapt or, in terms of this model, the higher
is the adoption intensity. The expression [e "#*f, | — 7, ] in the denominator
represents the expected incremental gain from waiting for the next signal.
The higher is this gain, or equivalently, the greater is the significance of the
anticipated information, the lower is the equilibrium adoption intensity.® In
fact, since both the numerator and the denominator vary with p,, we can
relate & and p, directly. Assume that Condition 1 continues to hold so that
& is non-negative. Then

Propasition 2. &(n,p,) is increasing in p,.

The intuition for this proposition is ¢asy to grasp. The greater is the value
of p,, the greater is the confidence in the new technology. This implies that
the expected gain from immediate adoption is high, and furthermore given
the Bayesian revision mechanism, it suggests that the potential gain from
waiting for further information is low: both these factors translate into a
higher adoption intensity.

IIl. THE AGGREGATE ADOPTION INTENSITY AND EXPECTED
DIFFUSION CURVES

For the rest of the paper we continue to assume that Condition 1 is valid,
and confine our attention to the limiting case described in Proposition 1.
For that case, the form of the solution suggests that adoptions tend to be

3 However, one must be cautious in pushing this argument too far. Strictly speaking, in the
mixed-strategy equilibrium, the adoption intensity of any firm depends on the prefitability of
the rivals’ adoption. In the case where all firms are identical, this creates no complications. In
the asymmetric case, it leads to the counter-intuitive result that the firm that has more to gain
through waiting chooses a higher adoption intensity. This is a failing of mixed-strategy Nash
equilibria in general, and is not peculiar to this madel.

© Basil Blackwel]l Lid. 1995,
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staggered: if the instantaneous adoption intensity is «, the probability of k
firms adopting simultaneously in a small interval ¢ is of order (as)* which is
of lower order than ¢ for k > 1. Once a firm adopts, the others defer adoption
by 4 in order to gather information, so that firms tend to adopt sequentially
rather than simuitaneously. Because exactly one firm adopts at each stage,
some conjectures about the diffusion path follow directly once we determine
“the duration of a stage.

Recall that the duration of a stage is given by the time interval between
two successive intervals and, in the equilibrium described above, the interval
comprises two phases. In the n-th stage-game, the strategic phase lasts from
t, to 7, and is followed by an information-gathering phase from 1, to 7, + 6.
At this point the next stage begins; that is, we have t,_, = 1, + 8. The total
duration of the »-th stage can be written as

.d"Ef”_l _tn=5+(tu_ru)-

Since 4 is exogenously specified, to determine the duration of this stage
we need only to determine the duration (z, — t,) of the strategic phase. By
construction, 7, is the time of the earliest adoption from among the n firms
in that stage-game. Given that we know the distribution over adoption times
for each firm, we can obtain the distribution of the earliest adoption time
from among the n firms. Since each firm has an exponential distribution over
adoption times, it follows from standard properties of the exponential
distribution, that the duration up to the earliest adoption is distributed
exponentially as well, with parameter equal to the sum of the individual
parameters. To formalise this, we define the aggregate adoption intensity for
a stage-game as the sum of equilibrium adoption intensities of all firms that
are currently active. It is written as

né(n,p,), if n,20 and o, =0,
0 otherwise

Aln,p,) = {

Note that it would suffice to say that A = na. The earliest adoption time
in stage n is distributed exponentially with parameter A. And since the mean
of an exponential distribution equals the inverse of its parameter, we have

Proposition 3. The expected duration of the n-th stage is givcn as
E[d,] = é + [A(n,p, )17

The next proposition describes how the aggregate adoption intensity varies
with n and p,. We confine our attention to the strategic phase.

Proposition 4. In the strategic phase, the aggregate adoption intensity
A(n, p,) is increasing in p,, and decreasing in n.

Propositions 3 and 4 relate the pace of diffusion to the fundamental
@ Bazil Blackwell Led. 1995,
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characteristics of the innovation in a manner that is consistent with received
wisdom. Ceteris paribus, in terms of this model, the greater is the expected
profitability of the innovation, the higher is the aggregate adoption intensity
and the shorter is the expected duration of each stage. Mansfield [1961]
found substantial evidence that the ‘rate of imitation’ tended to be higher
for profitable innovations. At the same time, the greater the significance of
the information that is expected to arrive in the future, the lower is the
adoption intensity and therefore, the longer is the expected duration of a
stage. In this model, information helps a firm to reduce the risk of adopting
‘bad’ technologies. The anticipated information is especially significant if the
cost of an erroneous adoption is high, so that our model predicts longer
diffusion lags for such technologies. Once again, this prediction is consistent
with empirical evidence — Mansfield found the rate of imitation to be lower
for innovations that required large initial investments.

To show that the adoption lags predicted by this model are not entirely
out of line with observed facts, consider the following as a finger exercise.
Let the rate of interest be 105 per annum, and suppose, somewhat
conservatively, that the proportional advantage from waiting for information,
that is (e~ **%_— n)/n, is of the order of 2%, Then, the aggregate adoption
intensity is given as

n_ 01 er annum
:r1—10.2p v

The ratio n/(n — 1)does not affect the arithmetic in too significant a manner:
its value ranges from 2 to 1 as n varies in its permissible range of 2 to any
finitely large number. For » = 2 the above parameters imply an aggregate
adoption intensity of about 10 per annum, and for large n the corresponding
figure is of the order of 5 per annum. These values imply a strategic phase
with an expected duration between 0.1-0.2 years, or of the order of a few
months. Combined with some reasonable specification of the information
lag 8, we obtain diffusion lags that are not implausible for many technologies.
Note that in the early stages of the diffusion of most technologies, information
might be more valuable than suggested by the 2%, figure in this exercise. If
the figure were higher, the expected duration of the stage would be
correspondingly longer.

The implications of this analysis for the pattern of diffusion are fairly
transparent. One, it creates the possibility that a run of bad experiences with
an innovation, even a good one, might arrest the process of diffusion. This,
in turn, would foreclose the generation of fresh information about the
technology and potentially good innovations might be lost irreversibly. Two,
the conjunction of Propositions 3 and 4 have some bearing on the shape of
diffusion curves for good innovations. It is commonly suggested that firms
tend to be cautious towards new technologies when they first arrive. One
) Basil Blackwell Ltd. 1993,
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possible way to interpret this caution in terms of the model presented here
would be to say that at the initial stage N, firms are relatively sceptical of
the merits of the technology, or that the value py is relatively smali, Then,
by Proposition 4, the aggregate adoption intensity will be small as weil
(provided only that p, is large enough for expected profitability to be positive;
otherwise the adoption intensity would be 0). For a good innovation we
expect that, with successive adoptions, p will tend towards its true value,
namely 1, by the law of large numbers. As p rises, the aggregate adoption
intensity tends to increase. (Additionally, the rise in the aggregate adoption
intensity is reinforced by the index » falling through time, though this latter
effect is relatively small). As a consequence, the expected duration of each
stage tends to fall from one stage to the next. In sum, as confidence in the
technology grows, we expect the diffusion lags to shrink. Of course, the
process of diffusion will be arrested if for any stage in the evolution of beliefs,
arun of bad experiences drives down the expected profitability of its adoption
to a negative value; this is especially likely when the innovation is a ‘bad’
one. If we plot the number of adoptions y, = N — r, against the {expected)
time taken for that number of adoptions to have occcurred, the smooth-line
curve joining these points could be viewed as an expected diffusion curve. If
the expected duration of a stage falls over the course of diffusion, successive
adoptions follow each other more closely - the curve rises gently at first and
then becomes steeper. The informational externality described in this modei
is, by its very nature, more relevant to the early stages of diffusion. Figure
1 provides a sketch of an expected diffusion curve for a good innovation.
Note that this is consistent with the early stages of an S-shaped pattern as
described in empirical studies.

Let us now consider the role of the information lag § on the pace of
diffusion which, interestingly, seems to have an ambiguous effect on the pace
of diffusion.

Proposition 5. The effect of varying é on the mean stage-duration E[d,] is
ambiguous.

In intuitive terms, a higher value of § implies later availability of information
after any adoption, and this makes waiting for that information less appealing.
This implies a higher adoption intensity in the strategic phase. So we would
have a longer information-gathering phase, but the expected duration of the
strategic phase would be lower, and the net effect cannot be signed. This
may have interesting policy implications. Suppose that, subject to certain
limits, the information lag & is within the ambit of policy control. This may
be if, say, the principal channel of information-revelation among firms is
published company accounts, and the periodicity of statutory declarations
is within the control of the policy maker. A policy maker eager to hasten
the diffusion of an innovation that she believes to be good might be tempted
@ Basi) Blackwell Ltd, 1995,
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N

Time

Figure 1
A Diffusion Curve

to lower 8. While this would shorten the information gathering phase, it
could prolong the strategic phase. In fact, the strategic phase might be
prolonged for sufficiently many stages such that the overall pace of diffusion
is lower.

Lastly, note that in this model the delays in the diffusion process are caused
by coordination failure. Each firm delays adoption in the hope that, if others
were to adopt before they did, it will be able to make a better-informed
adoption decision. Some coordination of the firms® intentions, if it could be
achieved by some mechanism, would be advantageous. To illustrate this point
we consider a simple two-firm example. Suppose an innovation arrives at
time t = 0 and each firm must choose when to adopt it. The firm that adopts
first is designated as the leader and gets n%; the follower, if it adopts no
sooner than & after the leader, gets e #%n'; otherwise it gets =~ as well.
Assume that e ?*z” > z¥ > 0, so that each firm would prefer to follow rather
than lead. If, as in our model, the adoption timing decision is taken in a
decentralised, uncoordinated manner, the cequilibrium solution typically
involves some lag before either firm adopts and cach firm’s expected gain
from the technological opportunity is just =% in equilibrium. The outcome
could be improved by means of ‘indicative planning’ as described, for instance,
in Boiton and Farrell [ 1990]. It might be the case that a social planner could
intervene, randomly nominating a firm to be the leader without any coercive
power. This would eliminate the coordination problem, and the consequent
delay, so that one firm would adopt immediately, and the other would follow
with a lag 8. If each firm has equal probability of being nominated the leader,
the expected payoff for each firm would be 0.5(¢™**=f + #*) which, given
our assumption, is larger than n%. The same outcome might obtain if the

(€ Basil Blackwsll Ltd, 1993,
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government, as the social planner, used its general pawer of taxation to
provide a selective subsidy to a pre-nominated firm. Generalisations of this
argument to the N-firm cases are less than straightforward since the optimal
strategy for the planner is likely to be sensitive to the speed of learning, so
that clear policy prescription must await further research.

IV. CONCLUSIONS

To summarise, while a large body of the literature on diffusion attributes
inter-firm differences in adoption times to the inherent heterogeneity of firms,
this paper argues that heterogencity is not essential for diffusion. Of course,
the claim is not unique to this model. Other game-theoretic models
demonstrate how identical firms could end up adopting at different times
but their analyses remain limited when it comes to the determinants of the
pace of diffusion. This paper remedies the lacuna in some measure. The
central focus is on the informational advantage to delayed adaption: the
ability to observe others’ success or failure with an innovation confers an
advantage on those who adopt after others, in as much as they can reconsider
their decision in the light of the new information. The process of diffusion
is modelied as a sequence of ‘wars of attrition’ among the potential adopters
at any stage, and these stage-games are linked together by a Bayesian updating
of beliefs. We show that, in equilibrium, each firm employs a mixed strategy
aver adoption times, and the intensity of adoption depends on the perceived
characteristics of the technology and on the learning process. The mean
duration of each stage is determined endogenously, allowing us to construct
some crude diffusion paths.

Our model concentrates exclusively on an informational externality in the
adoption process. In particular, the a2nalysis assumes that the private gain
from adoption is independent of the technologicai choices of other firms.
Clearly, this is restrictive. For instance, early entrants often capture the best
location in a geographical setting; pioneers usually acquire brand-recognition
as a technological leader. Would the results be altered drastically if we take
account of such issues? The spirit of the analysis remains valid as long as
the informational advantage to delayed adoption dominates the possible
advantages to early adoption. In general, Condition 1 is less likely to be
valid, but if it were valid, the logic of Proposition 1 c¢arries through. What
changes is the manner in which the stage-games tie together. A little reflection
suggests that the shape of the expected diffusion curve depends on the
progressive variation in the gain to deferring adoption relative to that from
immediate adoption. At the risk of seeming to rely on ad hoc assumptions,
we can support a wide variety of diffusion patterns. For instance, suppose
that as the innovation diffuses, the increasing experience with it not only
reduces the initial uncertainty but also creates the possibilty of future
improvements in it. This may happen if the accumulated experience with the
& Basil Blackwell Ltd. 1995,
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innovation induces the technology suppliers to introduce an improved version
of the innovation. If the likelihood of an improved version arriving is
increasing in the level of accumulated experience, this tendency could raise
the expected gain from waiting in the later stages of diffusion. This might
even support the S-shaped diffusion curve within our model. To see this,
consider the following possibility as a thought experiment. In the early stages,
-the pace of diffusion could be influenced primarily by the possibility of
learning more about the technology. As the uncertainty diminishes, the
potential gain from waiting tends to decline, causing the pace of diffusion to
rise. However, after some stage, the expected gain from waiting could increase
ongce again, principally because of the growing anticipation that an improved
technology will soon become available. This anticipation would then tend
to retard the pace of diffusion, causing the diffusion curve to taper off.

In this model the delays in the process of diffusion are, to some extent,
induced by coordination failure. To clarify the issue, it must be pointed out
that there are two sources of uncertainty that affect the firms' decisions in
this model. First, there is the uncertainty about the nature of the technology.
This technological uncertainty is exogenous to the firms’ decisions and is
faced by the industry as a whole. Additionally, from the viewpoint of each
firm, there is the uncertainty regarding the timing of its rivals’ adoptions.
This sort of uncertainty is endogenous to the diffusion process and (for the
want of a better term) may be called strategic uncertainty. The sequential
nature of adoption is optimal in relation to the technological uncertainty —it
allows firms to learn from each others’ mistakes -— but the strategic uncertainty
results in adoption lags that are ‘excessively’ long. Put simply, the diffusion
path tends to be more time-intensive than would be strictly necessary for
learning in our model. In such sitvations, some gains could possibly result
from the better co-ordination of firms’ information and intentions.
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APPENDIX _
Propaosition 1. Given Condition 1, as A— 0, the symmetric Nash equilibrium of
G,(n,p,) is given as [a(n, p,), a(n, p,).. .., «(n,p, )], such that
- {&(n,p.} if #,20 and v, =0;
1] otherwise,
1 fie.
n—1) (E_p‘ﬁm.L -n)

where &(n, p,) =

@ Baxil Blackwell Ltd. 1995, .
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Proof: First consider the case where p, is such that =, < 0. Clearly, it is not optimal
for any firm to ever adopt at such a stage: adoption yields a negative expected return,
whn]e waiting for information guarantees at least a nil return. Hence, each firm chooses

= O for all (t,v,,n). Since this value is mdepcndent of A, in the limit too we have
a = Lim, ,f*/A = 0. Intuitively, pcsmrmsm about the innovation halts the process
of diffusion altogether.

Next consider the case where x, 2 0 and v, # 0. The former implies that adoption
is profitable, but the latter indicates that at least one firm adopted the technology in
the interval [r — mA,t — A). A signal is surely expected before ¢ + & allowing the firm
to take an informed decision by t + & + A: given condition ! it must be optimal to
wait for that signal. Once again, we have f* = 0, and consquently » = .

Lastly, consider the case where n, 2> 0 and v, = 0 so0 that no information is expected
in the intervai (¢, t + &). Notice that as long as no firm adopts the game is stationary — if
t is reached, the game looks the same as it was at ¢ — A. We consider symmetric
equilibria of this game in behaviourally-mixed strategies. At such an equilibrium,
each firm is indifferent between adoption and waiting. The expected gain from
adoption equals 7, while that from waiting depends on the actions chosen by the
rival firms. Let § be the (symmetric and stationary) probability that a typical rival
will adapt in an aribtrary time period. The gain from waiting at any time period ¢an
be written as

W, =(1—Bf le " ¢,(p,) + ): TICH(E - BT Re Y, (b))
k=1

The right hand side in this expression is the probability-weighted sum of the value
of ending up in various continuation stage-games. To understand this, note that if
none of the other n — 1 firms adopts at ¢, the firm will find itself in the (unchanged)
n-th stage-game. Its value ¢,(p,) is discounted for the lag A and weighted with the
probability (1 — f)* ' of that event to obtain the first term. On the other hand, if
1< k<n—1 firms adopt at ¢, we have already determined that the equilibrium
strategy involves waiting for the resulting signal to arrive. Once it arrives the firm
finds itself in the continuation game corresponding to stage n — k and the value of
being in that stage-game depends on the posterior beliefs. Let ¢, _,(p,) be the expected
value of being in the (n — kjth stage-game, the expectation being over all possible
transitions of p,. Discounting this value for the information lag § and the reaction
lag A, and weighting it with the probability of k adoptions, we get the typical term
in the summation.

If a mixed strategy equilibrium exists, at that equilibrium each firm must be
indifferent between waiting and adoption. We have

W, = ¢, ==,
Using this in the previous expression, we have

a—1
nn = (l - ﬂ)"-l\eﬁﬁaﬂn + 2 ._-lciﬁl(l - ﬂr-l-le—p[ﬂfﬁl¢s_*(p!),
k=1

or multiplying both sides by %, we get

(Al) e‘mﬂn = (l - ﬂ)‘-lﬁu + :g "_lckﬂl(l - ﬁ}ﬂ 1ok _ﬁaéu k(pn)

The proof is now in three steps. First, we show that given condition 1 and A > 0O,
there exists a f in the open interval {0, 1) for which (A1) holds. Then it is argued that,
in equilibrium ¢, _,, the expected value of being in the continuation game, equals
#, - This allows us to argue that the solution to (Al) in the unit interval (call it £3)

(@ Basil Blackwell Ltd, 1995
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is unique. Next, as A — 0 equation (A1), which is of degree n — 1 in §, is approximated
by a linear equation, the solution to which yields the equilibrium adoption intensity &.

Lemma 1: For k=n—1, we bhave ¢,_, =#,,. That is, if n — 1 firms adopt
simultaneously, the expected value of being in the subsequent stage-game is 7, _ .

Proof: If all firms except the reference firm adopt simultaneously, that firm faces a
single-agent optimisation problem, and the best it can do is to react optimally to the
information provided by those firms. Ry definition, the expected value of that is %, , - ,.

O

Lemma 2: Equation (A1) has a solution in the unit interval for all n,

Proof: Rewrite (Al) as follows:
r—L

(A7) [(-A""'—eIn, + T "TICHA - B e, i (p) = 0.
k=1
This is of the form g{§; A) = 0, where g is a polynomial function of degree n — 1 in
8, and g is parametrised by A. We have -
gl0; Ay =[1 — e*]z,,  and using Lemma 1 we have
g A) = —ein, + e R, , ..

Clearly, for A > 0, we have g(0;A) < 0, and givén condition 1, g(1;A) > 0. Since g is
a polynomial function, and therefore continuous, there must exist some ¥ e(0,1)
such that g(83} = 0. O

. Lemma 3: ¢,_(p,) = 7, forall k.

Proof: Note that Lemma 2 holds for any arbitrary n. Suppose k forms adopt
simultaneously so that, given se S, , the beliefs for the subsequent (n — kjth stage-game
are given by p. The equilibrium strategy in that stage-game dictates (i) not adopt if
m{f) < 0, which yields a zero payoff, ot (ii) a non-trivial randomisation over the
adoption decision if #{f) > 0, and if condition 1 helds. The latter must provide the
same expected return as playing any pure strategy in the support (e.g., adoption)
which yields a(f). Taking expectations aver §,, and using the definition of 7, ,, the
claim follows. 0

Given Lemma 3 we can rewrite (A2) as

A) [ Bt — et 4 S A B it =0
k=1

Lemma 4: The solution to (A3) in the unit interval, 82, is unique.

Proof: Differentiate g(fl), as in the left hand side of (A3) with respect to . Collecting
terms we get

% _
g

L)
(n~ 1)[(1 =BT M R —m) + X TICEAE — AT ey f*;..u_)]-
k=1

© Basil Blackwell Ltd. 1995,
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From Condition | we know that (¢e”*%, —=x,)}>0. And given that m,, is
non-decreasing in k —recall that higher k implies a finer information structure so the
value of conditioning on that information cannot be lower —wehave (4 — Zyp) 2 0
for all k. It follows that the derivative must be positive in the interval [0,1); in
particular it equals (n — 1)(e"**%,, —=m,) at §=10. Becanse g(f;A) is strictly
monotonic in the unit interval, the solution to g(#; A) = 0 in the unit interval must
be unique. O

We now consider what happens to this solution as the decision interval shrinks.
We are interested in the instantaneous intensity Lim, o %/A. To evaluate this, note
that g(8;A) = O is of the form
(Ad) K, B '+.. +KB+K,Q)=0
where K, = (n — t}(e "%, —=,), and the only term that varies with A is
K, = (1 — e**)n,. For A =0, we have K, = 0 so that (A4) reduces to

Ko 7' +...+KB=0,
with root §* = 0 in the unit interval. That implies that B} /A evaluated at A =0 is
of the indeterminate form 0/0. By L'Hopital’s rule

. B . Apr/eA
Lim — = Lim .
s & 4.9 OAMDA

We do not have an explicit expression for f7; however, by the implicit differentiation
of g(B; A) = 0, we know 3fs /A = —g,/g,. Now, recalling that K, is the only term
that varies with A so that g, = 3K /8A. And g,, as evaluated in the proof of Lemma
4, is positive. Hence —g,/g, is well defined and finite. We can divide both sides of
{Ad) by A and rewrite as

H=1 1
K,-1("i') A2+ K,(g) A+ Kl(g) + %:0‘

Note that as A—0, all higher order terms vanish and the equation reduces to

B\ Ko _ B —Ked)  —(1—en
K‘(Z)* A Sy VSRl Yopy (Y F ey g

Taking the limits, once again by L'Hopital’s rule, we have

™
1
& = Lim 4 — Py

= as stated.
a0 A (1) e-—pﬂﬁr"‘l - T, =

Proposition 2. &n, p) is increasing in p.

Proof: We write n, = n(p) and #%, ; = #(p), so that
#m(p)

(n — 1) [e"*'a(p) — n(p)]
Both the numerator =n(p) and the denominator are positive, and since
#{p) = pf, + (1 — p)8, is increasing in p, it is sufficient to show that the denominator
is non-increasing in p. That is, it is sufficient to show that

[e™*a(p') — np')} < fe #*7(p") — n(p“)]  for p’'>p".
In fact since ¢~ #% < 1, it is sufficient to show that
(@ Basil Blackweli Ltd. 1995.
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[2(p) — =(p')] < [#p"} - n(p")] for p' >p".
To do that, we need a further construct. Define p, such that n{p,) = 0; the value p,

defines the break-even level of confidence in the technology. For any p we define the
following partition on the set of signals S,

S(py = {seS:pis,p) > p.};
S(p) = {seS:pis,p) <p.}.
For a given p, § is the set of signals which, if received would lead to the posterior

belief § being at least as large as p_, and $ is the set of signals for which the posterior
is less than p,. Now, by definition

#p) = ¥ Pr(s) Max[n(fs, p)), 0], which, using the above partition of $

&8
= Y Pr(s)u(s p)).
se8(p)
Using Bayes Law to obtain expressions for Pr(s) and p, we get
(p) = ; [pa,(8)0, + (1 — plo(s)8,).
se8ip)
In contrast,
wp) =Y. [p6,(5)8, + (1 — pla(s)8, ],
se8

where the difference in this and the previous expression lies in that the latter summation
is carried out over § rather than §. This implies

& p) — n(p) = ; - [pa,()8, + (1 — p)a,(s)8,] = Z(p), say.

Now consider any p', p” such that p' > p”. By construction, we must have 8(p') = S(p").
Z(p")— Z(p) = E (r' — p")6,(3)8, — 0,(s)8,]

sel(p'}
- z [2"6,4(8)0, + (1 — p")a,(s)0; ]
Se(p"HIr)
The first term is positive since p' > p” and 8, < 0 < 8,; the term inside the second
summation is negative since s€ S(p”). Therefore, Z(p”) > Z(p'), as required. O

Propasition 3. The expected duration of the n-th stage E[d,] =8 + [A{n,p,)] "

Proof: The information-gathering phase lasts 5. The expected duration of the strategic
phase equals A~ % this follows from the standard properties of the exponential
distribution described, for instance, in Mood, Greybill, and Boes [1974].

Propaosition 4. In the strategic phase, the aggregate adoption intensity A(n,p,), is
increasing in p, and decreasing in n.

Proof: By definition, in the strategic phase

n orip)
(n — 1) [e~?*#(p) — x(p)}’
The first part of the claim follows directly from Proposition 2, and second part form
the fact that n/(n — 1) is decreasing in a. O
€} Basil Blackwell Ltd. 1995
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Proposition 5. The effect-of varying & on the mean stage-duration E[4,] is ambiguous.

Proof: Differentiating E[d,] with respect to 8, we get

2 - e 5,) . e P, |

—E =] ——__ "t/ |

% fd1=1 ” . > 0 if and only if n < P 1)
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